Tag: Sixth Great Lake

Groundwater Threats: Michigan Should Act with Urgency to Pass a State Law to Control TCE

Photo courtesy of the Ohio Department of Health.

Editor’s note: A version of this article first appeared in FLOW’s 2021 Report: Deep Threats to Our Sixth Great Lake: Spotlighting and Solving Michigan’s Groundwater Emergency. 

By Dave Dempsey

Dave Dempsey, Senior Advisor

The many chemical contaminants in Michigan’s groundwater, coupled with the lack of environmentally sustainable federal and state chemical policies, continue to put Michigan at risk. An example is trichloroethylene (TCE), a cancer-causing manufactured chemical that has contaminated groundwater at more than 300 locations in Michigan.

In 2020, Minnesota became the first state in the country to outlaw many remaining uses of TCE.

FLOW’s 2021 Deep Threats groundwater report

 Michigan should follow suit.

Commonly used as a solvent to remove grease from metal parts during manufacturing processes or to make additional chemicals, TCE has also been used to extract greases, oils, fats, waxes, and tars by the textile industry; in dry cleaning operations; and in consumer products such as adhesives, paint removers, stain removers, lubricants, paints, varnishes, pesticides, and cold metal cleaners.

TCE released into the environment can pollute soil, groundwater, and the air. TCE’s high mobility in soil often results in groundwater contamination. TCE is slow to degrade and time-consuming to mitigate when it contaminates soil and groundwater. When spilled on the ground, TCE can travel through soil and water and contaminate drinking water supplies, including public and private wells.

In 2020, Minnesota became the first state in the country to outlaw many remaining uses of TCE. Michigan should follow suit.

It can also evaporate. TCE vapors can enter buildings through cracks in the foundation, pipes, and sump and drain systems, thus contaminating indoor air. This phenomenon is known as vapor intrusion. At several Michigan locations where housing and office structures were built on contamination sites, TCE was left in soils rather than being excavated and removed, and has vaporized into these buildings through foundations and basements. In some cases, the Michigan Department of Environment, Great Lakes and Energy (EGLE) has temporarily evacuated occupants of the buildings because of the danger of air inhalation of TCE.

TCE has been characterized as carcinogenic to humans through all routes of exposure and poses a significant human health hazard. Exposure to large amounts of the chemical may lead to coma, nerve damage, or death. TCE is known to interfere with early life development and lead to developmental toxicity, immunotoxicity, and neurotoxicity. This chemical has also been linked to damage to eyesight, hearing, the liver, the kidney, balance, heartbeat, blood, nervous system, and respiratory system. 

In the workplace, exposure to TCE may cause scleroderma, a systemic autoimmune disease, and, in men, it has been observed to result in decreases to sex drive, sperm quality, and reproductive hormone levels. TCE has been linked to Parkinson’s disease. There is controversy over a decision made by the U.S. Environmental Protection Agency (EPA) during the Trump Administration to reverse findings that TCE exposure to human embryos causes heart defects.

Dumped in shallow, sandy pits decades ago, TCE has contaminated 13 trillion gallons of groundwater in Mancelona, Michigan, making the Wickes Manufacturing plume the largest TCE plume in the United States. By contrast, the entire Grand Traverse Bay contains about 10 trillion gallons of water.

The U.S. Food and Drug Administration in 1977 banned the use of TCE in food, cosmetic, and drug products in the United States. In Canada, TCE is no longer manufactured, and the Canadian Environmental Protection Act of 1999 is intended to significantly reduce the use and release of TCE as a solvent degreaser into the environment. Several other countries, including Sweden and Germany, have regulations to control the use, and subsequent risks, of TCE.

In November 2020 a U.S. EPA study found that 52 of 54 uses of TCE still permitted present unreasonable risk to worker and consumer health. The EPA has two years to finalize a rule to reduce the risks posed by the 52 uses.

State action also has a place in efforts to protect human health from TCE. On May 16, 2020, Minnesota became the first state in the U.S. to ban high-risk uses of TCE. In effect, beginning June 1, 2022, any facility that is required to have an air emissions permit by the Minnesota Pollution Control Agency may not use TCE.

This ban was enacted largely due to the work of the Neighborhood Concerned Citizens Group (NCCG) of White Bear Township, Minnesota, which sought the ban after the Water Gremlin, a local fishing sinker manufacturer, had admitted to leaking elevated levels of TCE for nearly 17 years.

Dumped in shallow, sandy pits decades ago, TCE has contaminated 13 trillion gallons of groundwater in Mancelona, Michigan, making the Wickes Manufacturing plume the largest TCE plume in the United States. By contrast, the entire Grand Traverse Bay contains about 10 trillion gallons of water. Taxpayers have spent more than $27 million to provide safe drinking water to Mancelona residents of  properties whose private wells have been contaminated by TCE.

Several case studies have been performed to analyze the effectiveness of TCE alternatives in the United States. One example is a Schick facility in Verona, Virginia, that manufactures a variety of steel blades and uses TCE in both cleaning and degreasing operations. The company made TCE elimination a priority. The resulting process modifications reduced occupational and public risk and resulted in an approximate cost reduction of $250,000 from reduced energy use and material and hazardous waste disposal costs. Several companies in Michigan have also made the switch to TCE-free degreasing products.

Given the uncertainty of federal policy, Michigan should not wait to take action to limit most TCE uses, just as Michigan did not wait for the EPA to set enforceable standards for toxic PFAS in drinking water. Because it has a paramount interest in protecting the health of its residents, Michigan should act with urgency to pass a state law to control TCE.

Solving Michigan’s Groundwater Crisis to Protect Drinking Water, the Economy, and the Great Lakes

Dave Dempsey, Senior Advisor

By Dave Dempsey

For over three years, FLOW has analyzed and reported on one of the biggest gaps in Michigan’s environmental protection safety net—groundwater protection. Now, during National Groundwater Awareness Week 2021, we are reaffirming and expanding upon our call for stronger state groundwater protection policies and actions. 

Today we’re also releasing our new report, Deep Threats to Our Sixth Great Lake. Click here for a Key Facts sheet.

The stakes are too high not to act. Groundwater supplies 45% of Michigan’s population with drinking water—much of that from 1.25 million private wells that are not routinely monitored. For those who drink from these wells, groundwater contamination is an often-invisible threat.

Groundwater contamination is widespread. The Michigan Department of Environment, Great Lakes, and Energy (EGLE) says there are more than 14,000 contamination sites whose cleanups are unfunded, underfunded, or on hold. At the current rate of funding, it will take decades to clean up all of these sites—while more polluted parcels are added to the list.

One obvious reason for inadequate groundwater protection is that groundwater is out of sight. Problems caused by improper management of wastes in Michigan typically aren’t diagnosed until drinking water wells are polluted, contamination seeps from groundwater into lakes and streams, or pollution vaporizes into buildings, including residences.

Another reason for failures in Michigan groundwater protection is fragmented government authority. No groundwater focal point exists in state government. Several programs within EGLE touch on groundwater pollution prevention and cleanup, while other agencies, including the state Department of Agriculture and Rural Development, deal with aspects of groundwater stewardship. Some states address this problem by establishing overarching groundwater policies and coordinating mechanisms.

Our state and national groundwater problems are nothing new. Some contaminated sites were created a century ago, and significant taxpayer-funded groundwater cleanups have been going on for almost 50 years in Michigan. This makes inadequate groundwater policies all the more inexcusable.

We do appreciate the limited progress that has been made in Michigan since our 2018 groundwater report, including that:

  • Michigan has become one of the few states to adopt health-protective drinking water standards for PFAS, a toxic contaminant found in groundwater across Michigan.
  • The Legislature approved substantial contamination cleanup funding from the Renew Michigan Fund.
  • Governor Whitmer has proposed a $35 million fund to assist homeowners in replacing failing septic systems.

These actions, while helpful, fall far short of what is needed to safeguard our groundwater. Our new report, Deep Threats, proposes a host of reforms ranging from polluter liability, protective cleanup standards, penalties for groundwater damages, empowerment of citizens to seek relief when their groundwater is contaminated, and ultimately, a holistic Groundwater Protection Act.

Michigan prides itself as the Great Lakes State. But it cannot fulfill that destiny unless and until it conserves and protects its groundwater now and for future generations.

Michigan’s Great Lakes and Freshwater: Much to Protect

Great Lakes from Space

Sometimes Michiganders take for granted the abundance of water that surrounds us and flows beneath us. In the midst of Michigan Great Lakes and Fresh Water Week (August 8-16), reflecting on that endowment is timely.

We often forget that a large proportion of Michigan is underwater. Considering only the land area of Michigan, it’s the 22nd largest state; add in the more than 38,000 square miles of land underwater that belongs to Michigan in four of the five Great Lakes, and Michigan vaults to 11th place. In fact, Michigan has more land underwater than Indiana has above water. These lands and the waters over them are protected by the public trust doctrine and are to be protected in a manner that does not impair public uses.

The sheer size of Lake Superior is also not to be taken for granted. The largest lake by surface area in the world, Superior is as large as the other four Great Lakes—plus three additional Lake Eries.

Groundwater is often overlooked because we see it only when we use it. But it supplies 45% of Michigan’s population with drinking water, and the volume of groundwater in the Great Lakes basin is equivalent to that of Lake Huron—making it, in FLOW’s analogy, the Sixth Great Lake.

Michigan has over 36,000 miles of streams and rivers, 11,000 inland lakes, and approximately 6.5 million acres of wetlands (down from approximately 10.7 million acres before European settlement began).

Finally, Michigan has about 3,300 miles of Great Lakes shoreline. (For comparison, the flight distance from Detroit to Los Angeles is approximately 2,000 miles.)

Michigan Great Lakes and Fresh Water Week is designed to encourage the public to take direct action to protect our waters. What will you do?

Groundwater Should be Treated as Priceless, Not Worthless

The soil underneath Barbara Godwin-Chulick’s home in downtown Charlevoix is contaminated with toxic PCE. Photo courtesy of Interlochen Public Radio.

By Dave Dempsey

Why should we clean up contaminated groundwater instead of sealing it off?

Because what we can’t see can come back to hurt us.

Almost 40 years ago, contamination in Charlevoix’s groundwater forced the city to switch to Lake Michigan as its drinking water source. Traditionally, the state policy was to require cleanup of polluted groundwater to protect it for future uses. But in a major precedent, the state and the Environmental Protection Agency decided to let the contamination go on the belief that it would cleanse itself over time and because it was assumed nobody would be drinking the groundwater.

Now, Michigan Radio reports, that contamination is threatening health and property values.

This is one of scores of examples across Michigan where letting things go has left behind problems—and bills—for future generations.  Today’s generations.

In FLOW’s 2018 groundwater report, the Sixth Great Lake, we called for a change in state law to require cleanup of groundwater except where it is technically infeasible. Now legislation has been introduced to do exactly that.

It’s time we treat groundwater as priceless, not worthless.

Michigan Groundwater Policy: A History

Over 100 Years of Contamination

Groundwater contamination in Michigan reaches back over a century. For example, the Antrim Iron Works in Mancelona in 1910 began discharging residues of chemicals recovered from its charcoal production process to an on-site depression that gradually released wastes to groundwater. Although the plant closed in 1944, extensive contamination lingered for generations. By 1960, a plume of groundwater contamination at the site was estimated to be three miles long and a half-mile wide. Placed on the national Superfund list in 1982, the Tar Lake site remains contaminated despite excavation of some soils and pumping of groundwater. In 2013, the Environmental Protection Agency (EPA) determined additional soil excavation and expanded groundwater treatment was required.

Despite lessons learned from widespread contamination of surface water in the mid-20thCentury, policies of Michigan and many other states failed to expand groundwater protections. In a 1963 report, the U.S. Geological Survey noted, “Pollution of rivers and streams, especially in southern Michigan, has placed many communities and other water users in the ironic position of having available adequate quantities of surface water, but of a quality unfit for most uses. Similar pollution of ground water must be avoided.” Instead, as federal and state laws forced cleanup of surface waters, groundwater contamination accelerated.

The staff of the Michigan Water Resources Commission was sufficiently concerned in 1958 to propose a regulation requiring “all toxic and offensive wastes…shall be rendered innocuous by adequate treatment or by sufficient dilution before being permitted to enter the ground.” To support the proposal, the staff provided a list of 16 groundwater pollution sites. Despite this, the Commission tabled the proposed rule.

The emergency evacuation of the Love Canal neighborhood in Niagara Falls, New York in 1978 because of buried chemical wastes brought public attention to the crisis of contaminated groundwater. Congress passed the federal Superfund law, intended to fund cleanup of the worst sites, in 1980, enabling states to inventory and request cleanup assistance. Michigan submitted a list of over 80 sites, the second most of any state. But the full inventory was staggering. The tally included 63 sites that were fouling drinking water supplies, 649 sites of known or suspected groundwater contamination, and an estimated 50,000 sites with contamination potential. The more state authorities looked, the more contamination they found.

The passage of a solid waste management law in 1978 and a hazardous waste management law in 1979 curbed two of the principal threats to groundwater – landfills and spills of hazardous waste materials. In 1980, the department of natural resources finally promulgated the groundwater discharge rules the water resources commission had set aside in 1958. Regulations affecting petroleum storage in underground storage tanks that took effect in the late 1980s closed another loophole in groundwater protection. But it was too late to prevent many unnecessary health risks, an enormous cleanup bill to taxpayers, and a legacy of groundwater abuse that persists in widespread contamination.

Contaminated Sites and Sacrifice Zones

In 1995, Governor John Engler and the Legislature delivered another blow to groundwater. They removed from state law the presumption that polluted groundwater should be cleaned. One result is a long list of “sacrifice zones,” or sites where groundwater use is restricted or prohibited. In many locations, rather than attempting to clean up contaminated groundwater, the parties who own or seek to redevelop contaminated sites are allowed to leave the contaminants in place and instead work with the state to restrict access to it. An analogous policy for surface water would be to bar use of or access to polluted rivers and lakes – something the public would likely not tolerate.

State law sanctions two types of contaminated site exposure controls — restrictive covenants, which run with an individual property and bar certain uses of contaminated property, and institutional controls. Controls typically restrict uses on multiple properties and can affect large zones of groundwater. They include local ordinances or state laws and regulations that limit or prohibit the use of contaminated groundwater, prohibit the raising of livestock, prohibit development in certain locations, or restrict property to certain uses.

As of mid-February 2018, DEQ records showed 3,394 land use restrictions at contaminated sites across the state. Nearly 2,000 additional restrictions were on a list to be plotted and mapped. Of the 3,394 restrictions already recorded, 2,355 were restrictions on groundwater use. Some of the groundwater areas affected are several square miles in size. In effect, for the near future, the state has written off these areas of groundwater. Continuation of this approach will foreclose the use of significant groundwater resources by future generations.

Applicable Laws

Today, rather than protecting groundwater as a whole – or water throughout the hydrological cycle – Michigan law emphasizes regulation of categories of pollution sources that affect groundwater. This backward approach to resource protection blinds the state to the overall condition of Michigan’s groundwater – and artificially divides groundwater from the rest of the water cycle. The result is a degraded resource.

Federal laws do not fill the breach. The Clean Water Act does not generally apply to groundwater. The Safe Drinking Water Act provides some funding to states to assist communities in assessing threats to community water supplies, including groundwater supplies and to develop wellhead protection plans. But it does not provide a policy or regulate many groundwater contamination sources.

State law does lay down some groundwater protections. Michigan water quality protections in theory extend to groundwater. As defined in state statute, “Waters of the state” means groundwaters, lakes, rivers, streams, and all other watercourses and waters, including the Great Lakes within Michigan’s boundaries.

Michigan’s Natural Resources and Environmental Protection Act (NREPA), Part 327, declares that groundwater and surface water are one single hydrologic system. Groundwater can recharge surface water, and surface water on occasion loses water to and recharges groundwater. The waters of the state should be considered one resource for any groundwater protection regulation or standard. 

Part 327 recognizes water in the Great Lakes basin and in Michigan is held in public trust for the benefit of citizens. This principle should govern every water statute, and any statute regulating activities that protect groundwater, to assure that contaminants do not impair the public trust in connected wetlands, creeks, streams, and lakes, and Great Lakes.

Because land use directly affects groundwater quality, land uses should be managed to protect groundwater quantity and quality, connected surface waters, and the public trust at least in hydrologically connected public trust streams and lakes.

Dave Dempsey, Senior Advisor

Despite these legal provisions, in practice, Michigan treats groundwater and surface water differently. Drinking water standards apply to water drawn from subsurface sources and cleanup standards apply to contaminated groundwater, but ambient water quality standards do not apply. 

As an out-of-sight, out-of-mind resource, groundwater protection depends on our laws reflecting the science of our interconnected surface and groundwaters. Our laws need to catch up to science so we don’t continue to abuse this precious resource.


PFAS: The Not So Emerging Contaminants

“Emerging” Contaminants

PFAS (per- and polyfluoroalkyl substances) are driving Michigan’s latest surface and groundwater crisis, infiltrating public waters with what the media and others describe as “emerging” contaminants. It turns out, however, that this class of persistent fluorinated chemicals, known as “forever” chemicals due to their extraordinarily strong bonds, is anything but emergent.

In fact, the responsible chemical manufacturers (DuPont, 3M, and six others), U.S. Environmental Protection Agency (EPA), and U.S. Department of Defense (DOD) have known for decades about the toxicity of PFAS, adverse health effects on humans and the environment, and persistent nature of this family of 5,000+ chemicals. In 2017, the Pentagon identified 401 military sites with known or potential releases of these chemicals.

Complex litigation and class action lawsuits now decades old involving former DuPont employees, 3M, and other manufacturers established causation and linked adverse human impacts to known scientific toxicological effects. Just watch the film The Devil We Know for a gut-wrenching look at what happens to animals, humans, families, and communities poisoned by PFAS contamination when chemical manufacturers and regulatory agencies duplicitously cooperate, ignore science, and continue to produce these chemicals that are ubiquitously found in our food, bodies, drinking water, clothes, and other consumer products sold around the globe.

The most commonly known PFAS-containing household products include Scotchgard®, Teflon®, and Gore-Tex®. PFAS chemicals can be found just about everywhere on the planet, including in mammals in remote Arctic regions. How vast a problem is this?  Vast and unprecedented. “An estimated five million to 10 million people in the United States may be drinking water laced with high levels of the chemicals,” according to the New York Times. And an alarming ninety-eight percent of Americans are estimated to have some level of these fluorinated chemicals in their blood.

In 2016, the EPA set a non-enforceable health advisory for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) levels in drinking water at a combined 70 parts per trillion (ppt). The Centers for Disease Control and Prevention and the Agency for Toxic Substances and Disease Registry, however, have stated repeatedly that exposure to even lower concentrations may pose health risks. Despite all that we know, in 2019 Americans still have no federal drinking water standard and no federal cleanup standard to protect communities from harmful health effects from these forever chemicals.

At the State Level

Without federal leadership to set drinking water and cleanup standards, and Superfund polluter liability, the states have to fend for themselves to address a nationwide crisis affecting everything from food, drinking water, wastewater, public health, wildlife, commercial household products, and industry processes. States including Colorado, Minnesota, Michigan, New Jersey, New Mexico, Texas, Vermont, and Washington have or are in the process of developing policies to regulate drinking water and cleanup for this class of toxic chemicals. And another 11 states—Alabama, California, Illinois, Massachusetts, Mississippi, Montana, New Hampshire, New York, North Carolina, Pennsylvania, and Wisconsin—are  considering following suit, according to Bloomberg Environment analysis (check out Safer States’ bill tracker to see what’s happening in your state).  

In Michigan, DEQ scientist Robert Delaney warned the state about the PFAS health crisis as early as 2012 in a seminal report that was largely ignored. That same year, the Michigan Department of Health and Human Services issued a “Do Not Eat” fish advisory near the former Wurtsmith Air Force Base. Given that these chemicals can bioaccumulate in aquatic ecosystems resulting in higher levels in fish tissue, Michigan issued a health advisory for surface waters at 11 to 12 ppt.

With the discovery of PFAS at Wurtsmith Air Force Base and post-Flint crisis, the State of Michigan launched the Michigan PFAS Action Response Team (MPART) in 2017 to investigate the drinking water systems, wastewater treatment plants, schools, and landfills across the state. The more the State of Michigan looked, the more PFAS-contaminated sites have been found.

In January 2018, the DEQ issued an emergency clean-up standard at 70 parts per trillion (ppt) in groundwater used for drinking water in Michigan. To date, the State of Michigan has tested 1,400 community water systems, and 90 percent of them have no detectable PFA levels. The 10 percent, however, are a significant concern. An executive order signed by Governor Gretchen Whitmer strengthened MPART (the Michigan PFAS Action Response Team) so that it can efficiently inform the public about toxic contamination threats, locate additional PFAS contamination zones, and take action on behalf of Michigan residents, notably by protecting their drinking water supplies from the family of chemicals.

But more needs to be done. Now.

State attorneys general, for example, need to further collaborate and take leadership in building a nationwide coalition to initiate litigation and demand federal agency action for drinking water and cleanup standards. In 2018, Minnesota’s Attorney General won an $850 million settlement with 3M, a manufacturer of perfluorinated chemicals (PFCs).

Where Things Stand

EPA’s recent release of a PFAS Action Plan is the latest example of government foot dragging in the extreme. The plan appears designed to slow the federal response and shift the burden to the states to set their own standards.

On March 1, Michigan’s U.S. Senators Gary Peters and Debbie Stabenow, along with ten other Senators, introduced legislation to regulate PFAS as a “hazardous substance” under the Comprehensive Environmental Response, Compensation, and Liability Act, also known also as CERCLA or Superfund. Under the bill, the EPA would have regulatory enforcement powers over PFAS and could require polluters to pay for PFAS groundwater contamination and clean up. U.S. Representative Debbie Dingell introduced identical legislation in the House (HB 545). On March 5, Governor Whitmer issued a supplemental budget request for $120 million in clean water funds, including $30 million for PFAS research and clean up.

Liz Kirkwood, Executive Director

With a family of 5,000 chemicals infused in everything from clothes to household products to manufacturing, federal and state toxicologists and risk experts are working hard to understand and evaluate the science of exposure and health impacts, and to determine what standards define an  acceptable risk. In Michigan, leading toxicologists include among others Dr. Rick Rediske, Carol Miller, Rita Loch-Caruso, Courtney Carignan, and Steve Safferman. Their findings are critical to informing and resolving  current state and federal policy debates on safe drinking water and clean up levels.

This latest surface and groundwater crisis is a reminder of how interconnected we are, how vulnerable the water cycle is, and how national chemical policy reform is urgently needed to protect human health and the environment before chemicals are put into commerce and adversely contact with human and the natural environment.  


Groundwater Connection Part 1: A New Podcast from FLOW about Michigan’s Sixth Great Lake, the Water Lying Beneath the Ground


Check this out on Chirbit


Groundwater Connection Part 1

by Sally Eisele

I am drawn to the water. I live on a small peninsula on an inland lake and love to swim and kayak in its crystal blue water on hot summer days. I fish. I’ve been fly fishing since my early 20s, and I’ve spent countless hours over the decades wading the cold, clear streams thinking about flies and trout and the way the rippled feeding lanes might yield a clue to both. My late father thought the best way to keep his adult children coming back home was to organize a yearly charter fishing trip on Lake Michigan. It worked. So much so, that after many years of working in San Francisco and Chicago, I returned to my home state and the Great Lakes I came to love like no place else in the world.

But I don’t often think that much about the groundwater, unless I’m worried about my septic system clean out or reading another big story about the latest chemical contamination issue. And so when my longtime colleague and friend Dave Dempsey asked me to do a podcast series about groundwater, I had to think about what I even knew about the water under the ground. And I agreed to do it–not as a journalist, which is my background, or as an activist, which is not, but as a fellow Michigander with a lifelong connection of my own to the water of this state.

I thought it would be fun to do it as a different kind of trip “up north.” Not the kind of trip that millions of us take to the beaches and sunsets of the north, but a trip to the groundwater. And so that’s what this is. No breaking news here. No big call to action. Just an audio trip up north to experience the water we may not think about much that is, in fact, the lifeblood of this state, making all the rest of those wonderful trips up north even possible.

Enjoy.


Sally Eisele is a nationally recognized public media professional with more than three decades of experience in journalism, editing, and broadcast newsroom management.

Sally’s work in public radio began in Michigan, where she worked at WKAR in Lansing and the Michigan Public Radio Network in its early years, covering politics and the environment. It includes more than a decade as managing editor at WBEZ public radio in Chicago. During that time, she reorganized the station’s news operation and led a team of reporters, editors, producers, and hosts to win many of the most prestigious national awards in American journalism.

Before that, she played a key editorial leadership role at KQED public radio in San Franscisco, where she was instrumental in the early organization of the station’s newsroom under its new all-news format in the 1990’s, was the founding senior producer of the award-winning California Report and helped guide the work that would eventually propel the station into its position now as the most listened-to public radio station in the country.

Sally now has a home in northern Michigan, where she is continuing her work as an independent writer and editor, focusing on rural issues, northern life, and the Great Lakes.


FLOW’s Groundwater Awareness Week: What It Is and Why It Matters


Michigan is called the Great Lakes state but is a poor steward of the sixth Great Lake, the water lying beneath Michigan’s ground. During National Groundwater Awareness Week March 10-16, FLOW is calling for state-level reforms to strengthen protection of Michigan’s groundwater.


The Invisible Resource

Groundwater is an immense and invisible resource. The volume of groundwater in the Great Lakes watershed is roughly equal to the volume of Lake Huron. Often overlooked because it is out of sight, Michigan’s groundwater is a giant asset and life-giving resource that fills wells, grows crops, fuels industry, and replenishes the Great Lakes.

This week, we feature content directly related to this resource. FLOW has been investigating Michigan groundwater policies and problems for more than a year. In September 2018, we released a report, The Sixth Great Lake:  The Emergency Threatening Michigan’s Overlooked Groundwater Resource. Our concern and communication continues. 

Our content to be released throughout Groundwater Awareness Week includes an inspiring video narrated by poet and author Anne-Marie Oomen; two podcasts developed by writer and broadcast professional Sally Eisele; blog posts by FLOW experts shining a spotlight on PFAS and other groundwater pollution problems and protective solutions; and a fact sheet summing it all up.

In addition, FLOW is developing a groundwater map for release later this spring making it easy for you to learn about the resource across Michigan and in your region of the state.

Why Is Groundwater Important?

Michigan has more private drinking water wells than any other state. About 45% of the state’s population depends on groundwater as its drinking water source. Michigan industries withdraw 64 million gallons of groundwater daily from on-site wells. Over 260 million gallons of groundwater are withdrawn daily in Michigan for irrigation. As much as 42% of the water in the Great Lakes originates from groundwater.

For a resource so vital to human health and the economy, Michigan’s groundwater is shabbily treated in both policy and practice. Of the 50 states, only Michigan lacks a statewide law protecting groundwater from septic systems – and there are an estimated 130,000 leaking septic systems within Michigan’s borders. Other major threats include an estimated 6,000 contamination sites for which no private or public funding is available and widespread nitrate contamination from agricultural practices.

What Is Groundwater?

The hydrologic cycle governs water movement. Surface water is heated by the sun and evaporates into the atmosphere, forming clouds. These clouds condense and precipitation falls back to Earth as rain, snow, sleet, or hail. Water will then either return to a surface body of water or seep into the soil and move through the crust as groundwater.

Some may envision groundwater as an underground river or lake, but groundwater is held in tiny pore spaces in the rock and soil. After water is absorbed into the ground, gravity pulls the water down through the unsaturated zone. This area of the Earth’s crust is where tiny gaps between sediment grains, called pore spaces, are filled with either air or water. Water here can be trapped and used by plant roots or percolate downward into the saturated zone, where water exclusively fills the pore spaces.

The division between the unsaturated and saturated zone is called the water table. This two-dimensional plane often follows the contours of the surface above, moving seasonally based on precipitation events.

Groundwater in the saturated zone moves both vertically and horizontally, flowing towards a lower elevation discharge point like a stream or a lake. These surface bodies of water often rely on groundwater sources, in addition to precipitation, to recharge their water levels. After re-entering a surface body of water, the water continues through the hydrologic cycle.

As groundwater moves through the surface of the Earth, it often travels through an aquifer. Aquifers are underground formations that contain water at high enough concentrations that we can sustainably pump.

The two types of aquifers are called confined and unconfined aquifers, differing in whether or not there is an impermeable layer between the surface and the aquifer or not. Both types of aquifer can be used as a freshwater source, but unconfined aquifers are much more easily affected by surface actions and contamination and are more susceptible to pollution and degradation.

Almost all groundwater will discharge into surface water, unless it is extracted first. As a result, contaminated groundwater can degrade lakes, streams, and the Great Lakes.


FACTS ABOUT GROUNDWATER


  • There are an estimated 2.8 million trillion gallons of groundwater, 30.1 percent of the world’s freshwater. 
  • An estimated 79.6 billion gallons of groundwater is withdrawn daily, or 26 percent of the water withdrawn in the U.S.
  • From 2010 to 2015, groundwater use in the United States increased by 8.3% while surface water use declined by 13.9%.
  • About a quarter of all U.S. rainfall becomes groundwater.
  • Hydrologists estimate U.S. groundwater reserves at 33,000 trillion gallons, equal to the amount discharged into the Gulf of Mexico by the Mississippi River in the past 200 years.
  • More than 15.9 million water wells serve the United States.
  • Thirty-eight percent of the U.S. population depends on groundwater for its drinking water supply, from both public and private wells.
  • Michigan, with an estimated 1.1 million households served by private water wells, has the largest such population of any state.
  • 6 million Michigan citizens are served by private household wells.
  • The amount of fresh groundwater in the Great Lakes Basin is approximately equal to the amount of water in Lake Huron.
  • Direct and indirect discharges of groundwater to the Great Lakes are estimated to account for as much as 2.7% and 42% (respectively) of the inflows to the Great Lakes.
  • In Michigan alone, there are more than 15,000 documented cases of groundwater contamination that could, potentially, affect the quality of water in the Great Lakes.
  • Groundwater can become contaminated with a wide variety of chemicals and other substances including nutrients, salts, metals, petroleum hydrocarbons and fuel additives, chlorinated solvents and additives, radionuclides, pharmaceuticals and other emerging contaminants, pesticides, and microorganisms (including pathogens).
  • Groundwater may improve the water quality of contaminated surface waters, providing areas of contaminant refuges in groundwater discharge zones in an otherwise contaminated surface water body.
  • 45% of Michigan citizens are served by groundwater.
  • Public water supplies using groundwater serve 1.7 million people in Michigan.
  • Michigan has 9% of the nation’s public groundwater supply systems, the highest share of any state (12,038 out of 128,371).
  • In 2017, Michigan used 2,888,325,875 gallons of groundwater.
  • Daily groundwater withdrawals in Michigan total over 260 million gallons for irrigation as well as 64 million gallons from on-site wells for industrial purposes.

Sources:  National Groundwater Association, Great Lakes Executive Committee Annex 8 Subcommittee, Michigan Department of Environmental Quality.

The Drinking Water Crisis: It’s Rural, Too

Groundwater is out of sight, but its mismanagement has real consequences for our health.

An article in Saturday’s New York Times confirms what FLOW reported in November: elevated levels of nitrate in groundwater have polluted thousands of rural wells in the Midwest. The Times notes that up to 42,000 wells in Wisconsin may contain nitrate at levels that exceed the national drinking water standard. FLOW found that almost 15,000 Michigan wells tested by state government’s drinking water laboratory between 2007 and 2017 had detectable nitrate, and about 10 percent of those exceeded the health standard.

FLOW’s report also noted a U.S. EPA estimate that 3,254 square miles of groundwater in Michigan are contaminated with nitrate concentrations that are at least half the level of the drinking water safety standard. This is 6 percent of the state’s land area.

Nitrate is a form of nitrogen combined with oxygen that can be converted in the body to nitrite. Agricultural sources of nitrate include wastes from livestock operations and farm fertilizers. Nitrate in drinking water can cause a disease called methemoglobinemia, a blood disorder primarily affecting infants under six months of age. Some studies suggest maternal exposure to environmental nitrates and nitrites may increase the risk of pregnancy complications such as anemia, threatened abortion/premature labor, or preeclampsia.

The Times calls the problem, “Rural America’s Own Private Flint,” because, as in Flint, weak government policies and poor enforcement have enabled health-threatening contamination of drinking water. Excessive commercial fertilizer use and application of agricultural animal waste are the leading culprits in nitrate contamination. Government has a duty to protect all waters, including groundwater, for the benefit of the public. But in Michigan and surrounding states, governments are shirking that public trust duty.

Agriculture can thrive without spreading contamination throughout our groundwater. Enacting and enforcing laws that prevent excessive application of commercial fertilizer and animal wastes can be done without harm to the agriculture economy. The public deserves no less.

The next governor and legislature of Michigan have much work to do to protect the Sixth Great Lake – the abundant groundwater underlying our land that provides drinking water for nearly 4.5 million Michiganders.